Terahertz Quantum-Staircase and Quantum-Parallel Laser Designs for GaAs/AIGaAs and SiGe/Si #### Richard Soref Air Force Research Laboratory **Quantum Staircase Laser** - *Highly simplified cascade - *No injector sections - *Identical quantum wells - *Strain-balanced SiGe/Si - *PIP and NIN laser designs Quantum Parallel Laser - *Simple flatband superlattice - *Low bias voltage - *"Super Superlattice" is the optimum design - *PIPIP and NININ designs | maintaining the data needed, and c
including suggestions for reducing | ompleting and reviewing the collect
this burden, to Washington Headqu
uld be aware that notwithstanding ar | o average 1 hour per response, includion of information. Send comments a arters Services, Directorate for Informy other provision of law, no person | regarding this burden estimate of mation Operations and Reports | or any other aspect of th
, 1215 Jefferson Davis l | is collection of information,
Highway, Suite 1204, Arlington | | |--|--|---|---|---|---|--| | 1. REPORT DATE JAN 2004 | 2 DEPORT TYPE | | | 3. DATES COVERED 00-00-2004 to 00-00-2004 | | | | 4. TITLE AND SUBTITLE | | | | 5a. CONTRACT NUMBER | | | | Terahertz Quantum-Staircase and Quantum-Parallel Laser Designs for GaAs/AlGaAsand SiGe/Si | | | | 5b. GRANT NUMBER | | | | GaAs/AlGaAsailu SiGC/Si | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) | | | | 5d. PROJECT NUMBER | | | | | | | | 5e. TASK NUMBER | | | | | | | | 5f. WORK UNIT NUMBER | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory, Wright Patterson AFB, OH, 45433 | | | | 8. PERFORMING ORGANIZATION
REPORT NUMBER | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | 11. SPONSOR/MONITOR'S REPORT
NUMBER(S) | | | | 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited | | | | | | | | 13. SUPPLEMENTARY NOTES Presented at the International Workshop on Quantum Cascade Lasers, Seville, Spain, Jan 4-8, 2004. | | | | | | | | 14. ABSTRACT | | | | | | | | 15. SUBJECT TERMS | | | | | | | | 16. SECURITY CLASSIFIC | 17. LIMITATION OF
ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF
RESPONSIBLE PERSON | | | | | a. REPORT
unclassified | b. ABSTRACT
unclassified | c. THIS PAGE
unclassified | Same as Report (SAR) | 7 | RESPUNSIBLE PERSON | | **Report Documentation Page** Form Approved OMB No. 0704-0188 # Principles and Limitations of Electrically-Injected Unipolar QSLs and QPLs #### Quantum Staircase Injectorless Approaches: - 1. Non-resonant-tunn. diagonal transition scheme: 1 QW - 2. Phonon-depopulated resonant tunneling scheme: 3 QW per period, vertical transition - 3. 1 QW per period resonant scheme: vertical transition #### **Limitations:** - At λ < 20 μ m, bias > 90 kV/cm - 500 to 1000 periods are required. ## Quantum Parallel Superlattice Approach: - Inter-miniband lasing (4 levels in effect) - Photon energy is less than LO phonon energy - Appl bias bucks out built-in voltage from n/n⁺ contacts Limitations: - Low gain at λ < 12 μm, SiGe - 500 to 1000 periods are required. - Must use T < 25 K in GaAs Hole Cascade via Inter-Well Diagonal Radiative Transition (designed in collaboration with University of Leeds team) ### QPL: GaAs/Al_{0.15}Ga_{0.85}As 200Å/24Å Superlattice Band Diagram In Real Space n-Ga(0.7)Al(0.3) elec. injector n-GaAs collector GaAs quantum wells Ga(0.85)Al(0.15)As barriers Dispersion Diagram: E < 36 meV, LO phonon emission is suppressed. # QPL constructed of "stiched" parallel regions; the "super super lattice" Resonant tunneling of electrons between flatband SLs is obtained by the **composition-gradient** in the n-doped AlGaAs transfer barriers Ballistic transport in each superlattice #### Ways to Accelerate Future Developments— Possible Collaborations, Leverage, Improvement of Approach - Try the new QPL in III-Vs and IV-IVs - Try the phonon-depop QSL in SiGe (64 meV, 300K lasing?) - Try the new GaN/AlGaN QSL (90 meV phonondepop, CW at 300K?) G. Sun and R. Soref, APL manuscript - New STTRs from AFOSR and ONR - On-going STTRs - European Union SiGe THz Project - MURI from AFOSR and/or ONR - Leeds EPSRC grant: ntype QCLs, and mid-IR QCLs # CONCLUSIONS...CHALLENGES...QUESTIONS Conclusions: * new SiGe and GaAs THz laser designs: simpler alternatives to the cascade, CVD Challenges: - * several microns of epitaxy required - * non resonant staircase...as with Leeds - * tunneling via graded barriers in SSL Questions: - * domain formation? carrier cooling? - * good mode overlap in SSL? - * mode loss due to n-barriers in SSL?